
jekakos-mcp-user-data-enrichment
ai.smithery/jekakos-mcp-user-data-enrichment
Enrich user data by adding social network links based on provided personal information. Integrate…
Documentation
MCP User Data Enrichment Server
A Model Context Protocol (MCP) server that enriches user data by adding social network links. This server can be integrated with AI platforms like Smithery.ai to provide social media link discovery capabilities.
Features
- User Data Enrichment: Takes user information (name, birth date) and returns social media links
- Mock Data Support: Includes pre-configured social links for demonstration
- Dynamic Generation: Automatically generates social links for new users
- MCP Protocol: Standard MCP implementation via stdio
- HTTP Wrapper: Optional HTTP API for remote access
- Smithery Integration: Ready for integration with Smithery.ai
Installation
npm install mcp-user-data-enrichment
Usage
As MCP Server (Recommended for Smithery)
# Direct stdio usage
node src/mcp-server.js
# Or via npm script
npm run mcp
As HTTP Server
# Start HTTP server on port 3000
npm start
API Endpoints
HTTP API (when running as server)
GET /status
- Server statusGET /tools
- List available toolsPOST /tools/call
- Call any toolPOST /enrich-user
- Enrich user data
MCP Protocol
The server provides one tool: enrich_user_data
Input Schema:
{
"firstName": "string",
"lastName": "string",
"birthDate": "string (YYYY-MM-DD)"
}
Output:
{
"user": {
"firstName": "John",
"lastName": "Smith",
"birthDate": "1990-01-01"
},
"socialLinks": {
"instagram": "https://instagram.com/john_smith",
"facebook": "https://facebook.com/john.smith",
"twitter": "https://twitter.com/john_smith",
"linkedin": "https://linkedin.com/in/john_smith"
}
}
Smithery.ai Integration
This MCP server is designed to work with Smithery.ai, a platform for AI agent orchestration.
Setup in Smithery
- Deploy your server to a public repository on GitHub
- Configure MCP connection in Smithery:
{ "mcpServers": { "user-data-enrichment": { "command": "node", "args": ["path/to/mcp-server.js"] } } }
- Use the tool in your AI agent workflows
Example Smithery Usage
// In your Smithery agent
const result = await mcp.callTool('enrich_user_data', {
firstName: 'John',
lastName: 'Smith',
birthDate: '1990-01-01'
});
console.log(result.content[0].text);
Development
# Install dependencies
npm install
# Run in development mode
npm run dev
# Test MCP server directly
echo '{"jsonrpc": "2.0", "id": 1, "method": "tools/list"}' | node src/mcp-server.js
Testing
# Run test client
node test-client.js
# Test with curl
curl -X POST http://localhost:3000/enrich-user \
-H "Content-Type: application/json" \
-d '{"firstName": "John", "lastName": "Smith", "birthDate": "1990-01-01"}'
Mock Data
The server includes mock social links for these users:
- John Smith
- Sarah Johnson
- Michael Brown
For other users, links are generated automatically based on the name.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
License
MIT License - see LICENSE file for details
Deployment Files
Dockerfile
- Docker configuration for containerized deploymentsmithery.yaml
- Smithery.ai configuration file.dockerignore
- Docker ignore file for optimized builds
Related Links
- Model Context Protocol
- Smithery.ai - AI Agent Orchestration Platform
- MCP Inspector - MCP Testing Tool
No installation packages available.
Remote
Related Servers
ai.explorium/mcp-explorium
Access live company and contact data from Explorium's AgentSource B2B platform.
ai.smithery/ImRonAI-mcp-server-browserbase
Automate cloud browsers to navigate websites, interact with elements, and extract structured data.…
ai.smithery/IndianAppGuy-magicslide-mcp
Generate professional PowerPoint presentations from text, YouTube videos, or structured JSON data.…