
neverinfamous-memory-journal-mcp
ai.smithery/neverinfamous-memory-journal-mcp
A MCP server built for developers enabling Git based project management with project and personal…
Documentation
Memory Journal MCP Server
Last Updated October 18, 2025 8:24 PM EST - Production/Stable v1.1.3
A production-ready developer journal with knowledge graphs, visual relationship mapping, and intelligent search
🎉 Now Production/Stable! Memory Journal has graduated from beta with powerful relationship mapping, 10x faster startup, and comprehensive documentation.
🚀 Quick Deploy:
- PyPI Package -
pip install memory-journal-mcp
- Docker Hub - Alpine-based (225MB) with full semantic search
- MCP Registry - Discoverable by MCP clients
📚 Full Documentation: GitHub Wiki
✨ What's New in v1.1.3
🎉 Production/Stable Release
Memory Journal has officially graduated from beta! This release includes:
- 15 MCP tools (up from 13)
- 8 workflow prompts (up from 6)
- 3 MCP resources (up from 2)
- 17 comprehensive wiki pages
- Automatic schema migrations
- Production-grade stability
🔗 Entry Relationships & Knowledge Graphs
Build connections between your entries with typed relationships:
references
- General connections between workimplements
- Link implementations to specs/designsclarifies
- Add explanations and elaborationsevolves_from
- Track how ideas develop over timeresponse_to
- Thread conversations and replies
📊 Visual Relationship Mapping
Generate beautiful Mermaid diagrams showing how your work connects:
graph TD
E55["#55: Implementing visualization feature<br/>development_note"]
E56["#56: Testing the new tool<br/>technical_note"]
E57["#57: Documentation improvements<br/>enhancement"]
E56 ==>|implements| E55
E57 -.->|clarifies| E55
style E55 fill:#FFF3E0
style E56 fill:#FFF3E0
style E57 fill:#FFF3E0
⚡ Performance Revolution
- 10x faster startup - Lazy loading reduces init time from 14s → 2-3s
- Thread-safe operations - Zero race conditions in concurrent tag creation
- Database lock prevention - Single-connection transactions eliminate conflicts
- Optimized queries - Strategic indexes for relationship traversal
🛠️ New Tools (15 Total, +2 from v1.0)
visualize_relationships
- Generate Mermaid diagrams with depth controllink_entries
- Create typed relationships between entries- Plus comprehensive CRUD, triple search, analytics, and export
🎯 Enhanced Workflow Prompts (8 Total, +2 from v1.0)
find-related
- Discover connected entries via semantic similarityprepare-standup
- Daily standup summariesprepare-retro
- Sprint retrospectivesweekly-digest
- Day-by-day weekly summariesanalyze-period
- Deep period analysis with insightsgoal-tracker
- Milestone and achievement trackingget-context-bundle
- Project context with Git/GitHubget-recent-entries
- Formatted recent entries
📡 New Resources (3 Total, +1 from v1.0)
memory://graph/recent
- NEW Live Mermaid diagram of recent relationshipsmemory://recent
- 10 most recent entriesmemory://significant
- Significant milestones and breakthroughs
🗄️ Database Improvements
- Automatic schema migrations (seamless v1.0 → v1.1 upgrades)
- Soft delete support with
deleted_at
column - New
relationships
table with cascading deletes - Enhanced indexes for optimal query performance
🚀 Quick Start
Option 1: PyPI (Fastest - 30 seconds)
Step 1: Install the package
pip install memory-journal-mcp
Step 2: Add to ~/.cursor/mcp.json
{
"mcpServers": {
"memory-journal": {
"command": "memory-journal-mcp"
}
}
}
Step 3: Restart Cursor
Restart Cursor or your MCP client, then start journaling!
Option 2: Docker (Full Features - 2 minutes)
Step 1: Pull the Docker image
docker pull writenotenow/memory-journal-mcp:latest
Step 2: Create data directory
mkdir data
Step 3: Add to ~/.cursor/mcp.json
{
"mcpServers": {
"memory-journal": {
"command": "docker",
"args": [
"run", "--rm", "-i",
"-v", "./data:/app/data",
"writenotenow/memory-journal-mcp:latest",
"python", "src/server.py"
]
}
}
}
Step 4: Restart Cursor
Restart Cursor or your MCP client, then start journaling!
⚡ Install to Cursor IDE
One-Click Installation
Click the button below to install directly into Cursor:
Or copy this deep link:
cursor://anysphere.cursor-deeplink/mcp/install?name=Memory%20Journal%20MCP&config=eyJtZW1vcnktam91cm5hbCI6eyJhcmdzIjpbInJ1biIsIi0tcm0iLCItaSIsIi12IiwiLi9kYXRhOi9hcHAvZGF0YSIsIndyaXRlbm90ZW5vdy9tZW1vcnktam91cm5hbC1tY3A6bGF0ZXN0IiwicHl0aG9uIiwic3JjL3NlcnZlci5weSJdLCJjb21tYW5kIjoiZG9ja2VyIn19
Prerequisites
- ✅ Docker installed and running
- ✅ ~500MB disk space for data directory
Configuration
After installation, Cursor will use this Docker-based configuration. If you prefer manual setup, add this to your ~/.cursor/mcp.json
:
{
"memory-journal": {
"command": "docker",
"args": [
"run", "--rm", "-i",
"-v", "./data:/app/data",
"writenotenow/memory-journal-mcp:latest",
"python", "src/server.py"
]
}
}
📖 See Full Installation Guide →
📋 Core Capabilities
🛠️ 15 MCP Tools - Complete Development Workflow
Entry Management:
create_entry
/create_entry_minimal
- Create entries with auto-contextupdate_entry
- Edit existing entries (thread-safe)delete_entry
- Soft or permanent deletionget_entry_by_id
- Retrieve with full relationship details
Search & Discovery:
search_entries
- FTS5 full-text search with highlightingsearch_by_date_range
- Time-based filtering with tagssemantic_search
- ML-powered similarity (optional)get_recent_entries
- Quick access to recent work
Relationships & Visualization:
link_entries
- Create typed relationshipsvisualize_relationships
- Generate Mermaid diagrams
Organization & Analytics:
list_tags
- Tag usage statisticsget_statistics
- Comprehensive analytics by time periodexport_entries
- JSON/Markdown exporttest_simple
- Connectivity testing
🎯 8 Workflow Prompts - Automated Productivity
prepare-standup
- Daily standup summaries from recent entriesprepare-retro
- Sprint retrospectives with achievements and learningsweekly-digest
- Day-by-day weekly summariesanalyze-period
- Deep analysis with pattern insightsgoal-tracker
- Milestone and achievement trackingfind-related
- Discover connected entries via semantic similarityget-context-bundle
- Complete project context (Git + GitHub)get-recent-entries
- Formatted display of recent work
🔍 Triple Search System - Find Anything, Any Way
- Full-text search - SQLite FTS5 with result highlighting and rank ordering
- Date range search - Time-based filtering with tag and type filters
- Semantic search - FAISS vector similarity for concept-based discovery (optional)
🔗 Entry Relationships - Build Your Knowledge Graph
- 5 relationship types - references, implements, clarifies, evolves_from, response_to
- Bidirectional linking - See both incoming and outgoing relationships
- Graph visualization - Generate Mermaid diagrams with depth control
- Smart discovery - Find related entries via semantic similarity and shared tags
📊 Comprehensive Analytics - Track Your Progress
- Entry counts by type (achievements, notes, milestones, etc.)
- Top tags with usage statistics
- Activity patterns by day/week/month
- Significant milestone tracking
- Export-ready statistics for reports
🎨 Visual Relationship Graphs - See How Work Connects
- 3 visualization modes - Entry-centric, tag-based, recent activity
- Customizable depth - Control relationship traversal (1-3 hops)
- Tag filtering - Focus on specific projects or topics
- Color-coded nodes - Personal (blue) vs Project (orange) entries
- Typed arrows - Different styles for different relationship types
🔄 Git & GitHub Integration - Automatic Context Capture
- Repository name and path
- Current branch
- Latest commit (hash + message)
- Recent GitHub issues (via
gh
CLI) - Working directory
- Timestamp for all context
📦 Data Export - Own Your Data
- JSON format - Machine-readable with full metadata
- Markdown format - Human-readable with beautiful formatting
- Flexible filtering - By date range, tags, entry types
- Portable - Take your journal anywhere
📖 Usage Examples
Create an Entry with Relationships
// Create a technical achievement
create_entry({
content: "Implemented lazy loading for ML dependencies - 10x faster startup!",
entry_type: "technical_achievement",
tags: ["performance", "optimization", "ml"],
significance_type: "technical_breakthrough"
})
// Returns: Entry #55
// Link related work
link_entries({
from_entry_id: 56, // Testing entry
to_entry_id: 55, // Implementation
relationship_type: "implements"
})
// Visualize the connections
visualize_relationships({
entry_id: 55,
depth: 2
})
Search and Analyze
// Full-text search with highlighting
search_entries({ query: "performance optimization", limit: 5 })
// Semantic search for concepts
semantic_search({ query: "startup time improvements", limit: 3 })
// Date range with tags
search_by_date_range({
start_date: "2025-10-01",
end_date: "2025-10-31",
tags: ["performance"]
})
// Get analytics
get_statistics({ group_by: "week" })
Generate Visual Maps
// Visualize entry relationships
visualize_relationships({
entry_id: 55, // Root entry
depth: 2 // 2 hops out
})
// Filter by tags
visualize_relationships({
tags: ["visualization", "relationships"],
limit: 20
})
// Access live graph resource
memory://graph/recent // Most recent 20 entries with relationships
🏗️ Architecture
┌─────────────────────────────────────────────────────────────┐
│ MCP Server Layer (Async/Await) │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────┐ │
│ │ Entry Creation │ │ Triple Search │ │ Relationship│ │
│ │ with Context │ │ FTS5/Date/ML │ │ Mapping │ │
│ └─────────────────┘ └─────────────────┘ └─────────────┘ │
├─────────────────────────────────────────────────────────────┤
│ Thread Pool Execution Layer │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────┐ │
│ │ Git Operations │ │ Database Ops │ │ Lazy ML │ │
│ │ (2s timeout) │ │ Single Conn │ │ Loading │ │
│ └─────────────────┘ └─────────────────┘ └─────────────┘ │
├─────────────────────────────────────────────────────────────┤
│ SQLite Database with FTS5 + Relationships │
│ ┌─────────────────────────────────────────────────────────┐│
│ │ entries + tags + relationships + embeddings + FTS ││
│ └─────────────────────────────────────────────────────────┘│
└─────────────────────────────────────────────────────────────┘
🔧 Technical Highlights
Performance & Security
- Python 3.14 - Latest Python with free-threaded support (PEP 779), deferred annotations (PEP 649), and performance optimizations
- 10x faster startup - Lazy loading of ML dependencies (2-3s vs 14s)
- Thread-safe operations - Zero race conditions in tag creation
- WAL mode - Better concurrency and crash recovery
- Database lock prevention - Single-connection transactions
- Aggressive timeouts - Git operations fail-fast (2s per command)
- Input validation - Length limits, parameterized queries, SQL injection prevention
Semantic Search (Optional)
- Model:
all-MiniLM-L6-v2
(384-dimensional embeddings) - Storage: FAISS index for fast similarity search
- Graceful degradation: Works perfectly without ML dependencies
Data & Privacy
- Local-first: Single SQLite file, you own your data
- Portable: Move your
.db
file anywhere - Secure: No external API calls, non-root Docker containers
📚 Documentation
Full documentation available on the GitHub Wiki:
- Installation Guide
- Tools Reference
- Prompts Guide
- Relationship Visualization
- Examples & Tutorials
- Architecture Deep Dive
GitHub Gists: Practical Examples & Use Cases
→ View All Memory Journal Gists
Explore 5 curated gists with real-world examples and implementation patterns:
- Complete Feature Showcase - All 15 tools, 8 prompts, and 3 resources
- Relationship Mapping & Knowledge Graphs - Build knowledge graphs with typed relationships
- Triple Search System Guide - Master FTS5, date range, and semantic search
- Workflow Automation & Prompts - Standup, retrospectives, and weekly digests
- Git Integration & Context Capture - Automatic project context from Git and GitHub
🔗 Resources
- GitHub Wiki - Complete documentation
- GitHub Gists - 5 practical examples and use cases
- Docker Hub - Container images
- PyPI Package - Python package
- MCP Registry - Official MCP listing
- GitHub Issues - Bug reports & feature requests
- Adamic Support - Project announcements
📄 License
MIT License - See LICENSE file for details.
🤝 Contributing
Built by developers, for developers. PRs welcome! See CONTRIBUTING.md for guidelines.
No installation packages available.
Remote
Related Servers
ai.smithery/Hint-Services-obsidian-github-mcp
Connect AI assistants to your GitHub-hosted Obsidian vault to seamlessly access, search, and analy…
ai.smithery/anirbanbasu-pymcp
Primarily to be used as a template repository for developing MCP servers with FastMCP in Python, P…
ai.smithery/saidsef-mcp-github-pr-issue-analyser
A Model Context Protocol (MCP) application for automated GitHub PR analysis and issue management.…