
QueryWeaver
com.falkordb/QueryWeaver
An MCP server for Text2SQL: transforms natural language into SQL using graph schema understanding.
Documentation
QueryWeaver
REST API · MCP · Graph-powered
QueryWeaver is an open-source Text2SQL tool that converts plain-English questions into SQL using graph-powered schema understanding. It helps you ask databases natural-language questions and returns SQL and results.
Get Started
Docker
💡 Recommended for evaluation purposes (Local Python or Node are not required)
docker run -p 5000:5000 -it falkordb/queryweaver
Launch: http://localhost:5000
Use an .env file (Recommended)
Create a local .env
by copying .env.example
and passing it to Docker. This is the simplest way to provide all required configuration:
cp .env.example .env
# edit .env to set your values, then:
docker run -p 5000:5000 --env-file .env falkordb/queryweaver
Alternative: Pass individual environment variables
If you prefer to pass variables on the command line, use -e
flags (less convenient for many variables):
docker run -p 5000:5000 -it \
-e APP_ENV=production \
-e FASTAPI_SECRET_KEY=your_super_secret_key_here \
-e GOOGLE_CLIENT_ID=your_google_client_id \
-e GOOGLE_CLIENT_SECRET=your_google_client_secret \
-e GITHUB_CLIENT_ID=your_github_client_id \
-e GITHUB_CLIENT_SECRET=your_github_client_secret \
-e AZURE_API_KEY=your_azure_api_key \
falkordb/queryweaver
Note: To use OpenAI directly instead of Azure OpenAI, replace
AZURE_API_KEY
withOPENAI_API_KEY
in the above command.
For a full list of configuration options, consult
.env.example
.
MCP server: host or connect (optional)
QueryWeaver includes optional support for the Model Context Protocol (MCP). You can either have QueryWeaver expose an MCP-compatible HTTP surface (so other services can call QueryWeaver as an MCP server), or configure QueryWeaver to call an external MCP server for model/context services.
What QueryWeaver provides
-
The app registers MCP operations focused on Text2SQL flows:
list_databases
connect_database
database_schema
query_database
-
To disable the built-in MCP endpoints set
DISABLE_MCP=true
in your.env
or environment (default: MCP enabled). -
Configuration
-
DISABLE_MCP
— disable QueryWeaver's built-in MCP HTTP surface. Set totrue
to disable. Default:false
(MCP enabled).
Examples
Disable the built-in MCP when running with Docker:
docker run -p 5000:5000 -it --env DISABLE_MCP=true falkordb/queryweaver
Calling the built-in MCP endpoints (example)
- The MCP surface is exposed as HTTP endpoints.
Server Configuration
Below is a minimal example mcp.json
client configuration that targets a local QueryWeaver instance exposing the MCP HTTP surface at /mcp
.
{
"servers": {
"queryweaver": {
"type": "http",
"url": "http://127.0.0.1:5000/mcp",
"headers": {
"Authorization": "Bearer your_token_here"
}
}
},
"inputs": []
}
REST API
API Documentation
Swagger UI: https://app.queryweaver.ai/docs
OpenAPI JSON: https://app.queryweaver.ai/openapi.json
Overview
QueryWeaver exposes a small REST API for managing graphs (database schemas) and running Text2SQL queries. All endpoints that modify or access user-scoped data require authentication via a bearer token. In the browser the app uses session cookies and OAuth flows; for CLI and scripts you can use an API token (see tokens
routes or the web UI to create one).
Core endpoints
- GET /graphs — list available graphs for the authenticated user
- GET /graphs/{graph_id}/data — return nodes/links (tables, columns, foreign keys) for the graph
- POST /graphs — upload or create a graph (JSON payload or file upload)
- POST /graphs/{graph_id} — run a Text2SQL chat query against the named graph (streaming response)
Authentication
- Add an Authorization header:
Authorization: Bearer <API_TOKEN>
Examples
- List graphs (GET)
curl example:
curl -s -H "Authorization: Bearer $TOKEN" \
https://app.queryweaver.ai/graphs
Python example:
import requests
resp = requests.get('https://app.queryweaver.ai/graphs', headers={'Authorization': f'Bearer {TOKEN}'})
print(resp.json())
- Get graph schema (GET)
curl example:
curl -s -H "Authorization: Bearer $TOKEN" \
https://app.queryweaver.ai/graphs/my_database/data
Python example:
resp = requests.get('https://app.queryweaver.ai/graphs/my_database/data', headers={'Authorization': f'Bearer {TOKEN}'})
print(resp.json())
- Load a graph (POST) — JSON payload
curl -H "Authorization: Bearer $TOKEN" -H "Content-Type: application/json" \
-d '{"database": "my_database", "tables": [...]}' \
https://app.queryweaver.ai/graphs
Or upload a file (multipart/form-data):
curl -H "Authorization: Bearer $TOKEN" -F "file=@schema.json" \
https://app.queryweaver.ai/graphs
- Query a graph (POST) — run a chat-based Text2SQL request
The POST /graphs/{graph_id}
endpoint accepts a JSON body with at least a chat
field (an array of messages). The endpoint streams processing steps and the final SQL back as server-sent-message chunks delimited by a special boundary used by the frontend. For simple scripting you can call it and read the final JSON object from the streamed messages.
Example payload:
{
"chat": ["How many users signed up last month?"],
"result": [],
"instructions": "Prefer PostgreSQL compatible SQL"
}
curl example (simple, collects whole response):
curl -s -H "Authorization: Bearer $TOKEN" -H "Content-Type: application/json" \
-d '{"chat": ["Count orders last week"]}' \
https://app.queryweaver.ai/graphs/my_database
Python example (stream-aware):
import requests
import json
url = 'https://app.queryweaver.ai/graphs/my_database'
headers = {'Authorization': f'Bearer {TOKEN}', 'Content-Type': 'application/json'}
with requests.post(url, headers=headers, json={"chat": ["Count orders last week"]}, stream=True) as r:
# The server yields JSON objects delimited by a message boundary string
boundary = '|||FALKORDB_MESSAGE_BOUNDARY|||'
buffer = ''
for chunk in r.iter_content(decode_unicode=True, chunk_size=1024):
buffer += chunk
while boundary in buffer:
part, buffer = buffer.split(boundary, 1)
if not part.strip():
continue
obj = json.loads(part)
print('STREAM:', obj)
Notes & tips
- Graph IDs are namespaced per-user. When calling the API directly use the plain graph id (the server will namespace by the authenticated user). For uploaded files the `database` field determines the saved graph id.
- The streaming response includes intermediate reasoning steps, follow-up questions (if the query is ambiguous or off-topic), and the final SQL. The frontend expects the boundary string `|||FALKORDB_MESSAGE_BOUNDARY|||` between messages.
- For destructive SQL (INSERT/UPDATE/DELETE etc) the service will include a confirmation step in the stream; the frontend handles this flow. If you automate destructive operations, ensure you handle confirmation properly (see the `ConfirmRequest` model in the code).
## Development
Follow these steps to run and develop QueryWeaver from source.
### Prerequisites
- Python 3.12+
- pipenv
- A FalkorDB instance (local or remote)
- Node.js and npm (for the TypeScript frontend)
### Install and configure
Quickstart (recommended for development):
```bash
# Clone the repo
git clone https://github.com/FalkorDB/QueryWeaver.git
cd QueryWeaver
# Install dependencies (backend + frontend) and start the dev server
make install
make run-dev
If you prefer to set up manually or need a custom environment, use Pipenv:
# Install Python (backend) and frontend dependencies
pipenv sync --dev
# Create a local environment file
cp .env.example .env
# Edit .env with your values (set APP_ENV=development for local development)
Run the app locally
pipenv run uvicorn api.index:app --host 0.0.0.0 --port 5000 --reload
The server will be available at http://localhost:5000
Alternatively, the repository provides Make targets for running the app:
make run-dev # development server (reload, debug-friendly)
make run-prod # production mode (ensure frontend build if needed)
Frontend build (when needed)
The frontend is a TypeScript app in app/
. Build before production runs or after frontend changes:
make install # installs backend and frontend deps
make build-prod # builds the frontend into app/public/js/app.js
# or manually
cd app
npm ci
npm run build
OAuth configuration
QueryWeaver supports Google and GitHub OAuth. Create OAuth credentials for each provider and paste the client IDs/secrets into your .env
file.
- Google: set authorized origin and callback
http://localhost:5000/login/google/authorized
- GitHub: set homepage and callback
http://localhost:5000/login/github/authorized
Environment-specific OAuth settings
For production/staging deployments, set APP_ENV=production
or APP_ENV=staging
in your environment to enable secure session cookies (HTTPS-only). This prevents OAuth CSRF state mismatch errors.
# For production/staging (enables HTTPS-only session cookies)
APP_ENV=production
# For development (allows HTTP session cookies)
APP_ENV=development
Important: If you're getting "mismatching_state: CSRF Warning!" errors on staging/production, ensure APP_ENV
is set to production
or staging
to enable secure session handling.
AI/LLM configuration
QueryWeaver uses AI models for Text2SQL conversion and supports both Azure OpenAI and OpenAI directly.
Default: Azure OpenAI
By default, QueryWeaver is configured to use Azure OpenAI. You need to set all three Azure credentials:
AZURE_API_KEY=your_azure_api_key
AZURE_API_BASE=https://your-resource.openai.azure.com/
AZURE_API_VERSION=2024-12-01-preview
Alternative: OpenAI directly
To use OpenAI directly instead of Azure, simply set the OPENAI_API_KEY
environment variable:
OPENAI_API_KEY=your_openai_api_key
When OPENAI_API_KEY
is provided, QueryWeaver automatically switches to use OpenAI's models:
- Embedding model:
openai/text-embedding-ada-002
- Completion model:
openai/gpt-4.1
This configuration is handled automatically in api/config.py
- you only need to provide the appropriate API key.
Docker examples with AI configuration
Using Azure OpenAI:
docker run -p 5000:5000 -it \
-e FASTAPI_SECRET_KEY=your_secret_key \
-e AZURE_API_KEY=your_azure_api_key \
-e AZURE_API_BASE=https://your-resource.openai.azure.com/ \
-e AZURE_API_VERSION=2024-12-01-preview \
falkordb/queryweaver
Using OpenAI directly:
docker run -p 5000:5000 -it \
-e FASTAPI_SECRET_KEY=your_secret_key \
-e OPENAI_API_KEY=your_openai_api_key \
falkordb/queryweaver
Testing
Quick note: many tests require FalkorDB to be available. Use the included helper to run a test DB in Docker if needed.
Prerequisites
- Install dev dependencies:
pipenv sync --dev
- Start FalkorDB (see
make docker-falkordb
) - Install Playwright browsers:
pipenv run playwright install
Quick commands
Recommended: prepare the development/test environment using the Make helper (installs dependencies and Playwright browsers):
# Prepare development/test environment (installs deps and Playwright browsers)
make setup-dev
Alternatively, you can run the E2E-specific setup script and then run tests manually:
# Prepare E2E test environment (installs browsers and other setup)
./setup_e2e_tests.sh
# Run all tests
make test
# Run unit tests only (faster)
make test-unit
# Run E2E tests (headless)
make test-e2e
# Run E2E tests with a visible browser for debugging
make test-e2e-headed
Test types
- Unit tests: focus on individual modules and utilities. Run with
make test-unit
orpipenv run pytest tests/ -k "not e2e"
. - End-to-end (E2E) tests: run via Playwright and exercise UI flows, OAuth, file uploads, schema processing, chat queries, and API endpoints. Use
make test-e2e
.
See tests/e2e/README.md
for full E2E test instructions.
CI/CD
GitHub Actions run unit and E2E tests on pushes and pull requests. Failures capture screenshots and artifacts for debugging.
Troubleshooting
- FalkorDB connection issues: start the DB helper
make docker-falkordb
or check network/host settings. - Playwright/browser failures: install browsers with
pipenv run playwright install
and ensure system deps are present. - Missing environment variables: copy
.env.example
and fill required values. - OAuth "mismatching_state: CSRF Warning!" errors: Set
APP_ENV=production
(orstaging
) in your environment for HTTPS deployments, orAPP_ENV=development
for HTTP development environments. This ensures session cookies are configured correctly for your deployment type.
Project layout (high level)
api/
– FastAPI backendapp/
– TypeScript frontendtests/
– unit and E2E tests
License
Licensed under the GNU Affero General Public License (AGPL). See LICENSE.
Copyright FalkorDB Ltd. 2025
docker.io/falkordb/queryweaver:0.0.11
docker pull docker.io/falkordb/queryweaver:0.0.11:undefined
Related Servers
ai.smithery/MisterSandFR-supabase-mcp-selfhosted
Manage Supabase projects end to end across database, auth, storage, realtime, and migrations. Moni…
ai.smithery/afgong-sqlite-mcp-server
Explore your Messages SQLite database to browse tables and inspect schemas with ease. Run flexible…
ai.smithery/bielacki-igdb-mcp-server
Explore and discover video games from the Internet Game Database. Search titles, view detailed inf…