
semantic-frame
io.github.Anarkitty1/semantic-frame
Token-efficient semantic compression for numerical data. 95%+ token reduction.
Documentation
Semantic Frame
Token-efficient semantic compression for numerical data.
Semantic Frame converts raw numerical data (NumPy, Pandas, Polars) into natural language descriptions optimized for LLM consumption. Instead of sending thousands of data points to an AI agent, send a 50-word semantic summary.
The Problem
LLMs are terrible at arithmetic. When you send raw data like [100, 102, 99, 101, 500, 100, 98] to GPT-4 or Claude:
- Token waste: 1000 data points = ~2000 tokens
- Hallucination risk: LLMs guess trends instead of calculating them
- Context overflow: Large datasets fill the context window
The Solution
Semantic Frame provides deterministic analysis using NumPy, then translates results into token-efficient narratives:
from semantic_frame import describe_series
import pandas as pd
data = pd.Series([100, 102, 99, 101, 500, 100, 98])
print(describe_series(data, context="Server Latency (ms)"))
Output:
The Server Latency (ms) data shows a flat/stationary pattern with stable
variability. 1 anomaly detected at index 4 (value: 500.00).
Baseline: 100.00 (range: 98.00-500.00).
Result: 95%+ token reduction, zero hallucination risk.
Installation
pip install semantic-frame
Or with uv:
uv add semantic-frame
š¤ Claude Integration (MCP)
Semantic Frame is available on the official MCP Registry, enabling direct integration with Claude.
Claude Code CLI:
claude mcp add semantic-frame
Claude Desktop - Add to your claude_desktop_config.json:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"semantic-frame": {
"command": "uvx",
"args": ["--from", "semantic-frame[mcp]", "semantic-frame-mcp"]
}
}
}
Once configured, Claude can use these tools:
describe_data- Analyze a single data seriesdescribe_batch- Analyze multiple series at oncedescribe_json- Get structured JSON output
Quick Start
Analyze a Series
from semantic_frame import describe_series
import numpy as np
# Works with NumPy arrays
data = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
result = describe_series(data, context="Daily Sales")
print(result)
# "The Daily Sales data shows a rapidly rising pattern with moderate variability..."
Analyze a DataFrame
from semantic_frame import describe_dataframe
import pandas as pd
df = pd.DataFrame({
'cpu': [40, 42, 41, 95, 40, 41],
'memory': [60, 61, 60, 60, 61, 60],
})
results = describe_dataframe(df, context="Server Metrics")
print(results['cpu'].narrative)
# "The Server Metrics - cpu data shows a flat/stationary pattern..."
Get Structured Output
result = describe_series(data, output="full")
print(result.trend) # TrendState.RISING_SHARP
print(result.volatility) # VolatilityState.MODERATE
print(result.anomalies) # [AnomalyInfo(index=4, value=500.0, z_score=4.2)]
print(result.compression_ratio) # 0.95
JSON Output for APIs
result = describe_series(data, output="json")
# Returns dict ready for JSON serialization
Supported Data Types
- NumPy:
np.ndarray - Pandas:
pd.Series,pd.DataFrame - Polars:
pl.Series,pl.DataFrame - Python:
list
Analysis Features
| Feature | Method | Output |
|---|---|---|
| Trend | Linear regression slope | RISING_SHARP, RISING_STEADY, FLAT, FALLING_STEADY, FALLING_SHARP |
| Volatility | Coefficient of variation | COMPRESSED, STABLE, MODERATE, EXPANDING, EXTREME |
| Anomalies | Z-score / IQR adaptive | Index, value, z-score for each outlier |
| Seasonality | Autocorrelation | NONE, WEAK, MODERATE, STRONG |
| Distribution | Skewness + Kurtosis | NORMAL, LEFT_SKEWED, RIGHT_SKEWED, BIMODAL, UNIFORM |
| Step Change | Baseline shift detection | NONE, STEP_UP, STEP_DOWN |
| Data Quality | Missing value % | PRISTINE, GOOD, SPARSE, FRAGMENTED |
LLM Integration
System Prompt Injection
from semantic_frame.interfaces import format_for_system_prompt
result = describe_series(data, output="full")
prompt = format_for_system_prompt(result)
# Returns formatted context block for system prompts
LangChain Tool Output
from semantic_frame.interfaces import format_for_langchain
output = format_for_langchain(result)
# {"output": "narrative...", "metadata": {...}}
Multi-Column Agent Context
from semantic_frame.interfaces import create_agent_context
results = describe_dataframe(df)
context = create_agent_context(results)
# Combined narrative for all columns with attention flags
Framework Integrations
Anthropic Claude (Native Tool Use)
pip install semantic-frame[anthropic]
import anthropic
from semantic_frame.integrations.anthropic import get_anthropic_tool, handle_tool_call
client = anthropic.Anthropic()
tool = get_anthropic_tool()
response = client.messages.create(
model="claude-sonnet-4-20250514",
max_tokens=1024,
tools=[tool],
messages=[{"role": "user", "content": "Analyze this sales data: [100, 120, 115, 500, 118]"}]
)
# Handle tool use in response
for block in response.content:
if block.type == "tool_use" and block.name == "semantic_analysis":
result = handle_tool_call(block.input)
print(result)
LangChain
pip install semantic-frame[langchain]
from semantic_frame.integrations.langchain import get_semantic_tool
tool = get_semantic_tool()
# Use as a LangChain BaseTool in your agent
CrewAI
pip install semantic-frame[crewai]
from semantic_frame.integrations.crewai import get_crewai_tool
tool = get_crewai_tool()
# Use with CrewAI agents
MCP (Model Context Protocol)
pip install semantic-frame[mcp]
Run the MCP server:
mcp run semantic_frame.integrations.mcp:mcp
Exposes describe_data tool for MCP clients like:
- ElizaOS: TypeScript-based agent framework
- Claude Desktop: Anthropic's desktop app
- Claude Code: Anthropic's CLI for Claude
- Any MCP-compatible client
Claude Code
Add Semantic Frame as a native tool in Claude Code:
# Install MCP dependencies
pip install semantic-frame[mcp]
# Add MCP server to Claude Code
claude mcp add semantic-frame -- uv run --project /path/to/semantic-frame mcp run /path/to/semantic-frame/semantic_frame/integrations/mcp.py
# Restart Claude Code, then verify connection
claude mcp list
# semantic-frame: ... - ā Connected
Once configured, ask Claude to analyze data and it will use the describe_data tool automatically.
Advanced Tool Use (Beta)
Semantic Frame supports Anthropic's Advanced Tool Use features for efficient tool orchestration in complex agent workflows.
Features
| Feature | Benefit | API |
|---|---|---|
| Input Examples | +18% parameter accuracy | Included by default |
| Tool Search | 1000+ tools without context bloat | defer_loading=True |
| Programmatic Calling | Batch analysis via code execution | allowed_callers=["code_execution"] |
Quick Start (Advanced)
import anthropic
from semantic_frame.integrations.anthropic import get_advanced_tool, handle_tool_call
client = anthropic.Anthropic()
tool = get_advanced_tool() # All advanced features enabled
response = client.beta.messages.create(
betas=["advanced-tool-use-2025-11-20"],
model="claude-sonnet-4-5-20250929",
max_tokens=4096,
tools=[
{"type": "tool_search_tool_regex_20251119", "name": "tool_search"},
{"type": "code_execution_20250825", "name": "code_execution"},
tool,
],
messages=[{"role": "user", "content": "Analyze all columns in this dataset..."}]
)
Configuration Options
from semantic_frame.integrations.anthropic import (
get_anthropic_tool, # Standard (includes examples)
get_tool_for_discovery, # For Tool Search
get_tool_for_batch_processing, # For code execution
get_advanced_tool, # All features enabled
)
MCP Batch Analysis
from semantic_frame.integrations.mcp import describe_batch
# Analyze multiple series in one call
result = describe_batch(
datasets='{"cpu": [45, 47, 95, 44], "memory": [60, 61, 60, 61]}',
)
See docs/advanced-tool-use.md for complete documentation.
Use Cases
Crypto Trading
btc_prices = pd.Series(hourly_btc_prices)
insight = describe_series(btc_prices, context="BTC/USD Hourly")
# "The BTC/USD Hourly data shows a rapidly rising pattern with extreme variability.
# Step up detected at index 142. 2 anomalies detected at indices 89, 203."
DevOps Monitoring
cpu_data = pd.Series(cpu_readings)
insight = describe_series(cpu_data, context="CPU Usage %")
# "The CPU Usage % data shows a flat/stationary pattern with stable variability
# until index 850, where a critical anomaly was detected..."
Sales Analytics
sales = pd.Series(daily_sales)
insight = describe_series(sales, context="Daily Revenue")
# "The Daily Revenue data shows a steadily rising pattern with weak cyclic pattern
# detected. Baseline: $12,450 (range: $8,200-$18,900)."
IoT Sensor Data
temps = pl.Series("temperature", sensor_readings)
insight = describe_series(temps, context="Machine Temperature (C)")
# "The Machine Temperature (C) data is expanding with extreme outliers.
# 3 anomalies detected at indices 142, 156, 161."
š Trading Module (v0.4.0)
Specialized semantic analysis for trading agents, portfolio managers, and financial applications.
Trading Tools
| Tool | Description |
|---|---|
describe_drawdown | Equity curve drawdown analysis with severity |
describe_trading_performance | Win rate, Sharpe, profit factor metrics |
describe_rankings | Multi-agent/strategy comparison |
describe_anomalies | Enhanced anomaly detection with PnL context |
describe_windows | Multi-timeframe trend alignment |
describe_regime | Market regime detection (bull/bear/sideways) |
describe_allocation | Portfolio allocation suggestions ā ļø |
Quick Examples
from semantic_frame.trading import (
describe_trading_performance,
describe_drawdown,
describe_regime,
describe_allocation,
)
# Trading Performance
pnl = [100, -50, 75, -25, 150, -30, 80]
result = describe_trading_performance(pnl, context="My Bot")
print(result.narrative)
# "My Bot shows good performance with 57.1% win rate. Profit factor: 2.53..."
# Drawdown Analysis
equity = [10000, 10500, 10200, 9800, 9500, 10100]
result = describe_drawdown(equity, context="Strategy")
print(result.narrative)
# "Strategy max drawdown: 9.5% (moderate). Currently recovering..."
# Market Regime
returns = [0.01, 0.015, 0.02, -0.01, 0.025, 0.018] # Daily returns
result = describe_regime(returns, context="BTC")
print(result.narrative)
# "BTC is in a strong bullish regime. Conditions favor trend-following..."
# Portfolio Allocation (ā ļø Educational only, not financial advice)
assets = {"BTC": [40000, 42000, 44000], "ETH": [2500, 2650, 2800]}
result = describe_allocation(assets, method="risk_parity")
print(result.narrative)
# "Suggested allocation: BTC (55%), ETH (45%). Risk: high..."
MCP Integration
All trading tools are available via MCP:
semantic-frame-mcp
Tools: describe_drawdown, describe_trading_performance, describe_rankings, describe_anomalies, describe_windows, describe_regime, describe_allocation
š Full Trading Documentation | Quick Reference
API Reference
describe_series(data, context=None, output="text")
Analyze a single data series.
Parameters:
data: Input data (NumPy array, Pandas Series, Polars Series, or list)context: Optional label for the data (appears in narrative)output: Format -"text"(string),"json"(dict), or"full"(SemanticResult)
Returns: Semantic description in requested format.
describe_dataframe(df, context=None)
Analyze all numeric columns in a DataFrame.
Parameters:
df: Pandas or Polars DataFramecontext: Optional prefix for column context labels
Returns: Dict mapping column names to SemanticResult objects.
SemanticResult
Full analysis result with:
narrative: Human-readable text descriptiontrend: TrendState enumvolatility: VolatilityState enumdata_quality: DataQuality enumanomaly_state: AnomalyState enumanomalies: List of AnomalyInfo objectsseasonality: Optional SeasonalityStatedistribution: Optional DistributionShapestep_change: Optional StructuralChange (STEP_UP, STEP_DOWN, NONE)step_change_index: Optional int (index where step change occurred)profile: SeriesProfile with statisticscompression_ratio: Token reduction ratio
Development
# Clone and install
git clone https://github.com/yourusername/semantic-frame
cd semantic-frame
uv sync
# Run tests
uv run pytest
# Run with coverage
uv run pytest --cov=semantic_frame
License
MIT License - see LICENSE file.
semantic-framepip install semantic-frameRelated Servers
ai.cirra/salesforce-mcp
Comprehensive Salesforce administration and data management capabilities
ai.explorium/mcp-explorium
Access live company and contact data from Explorium's AgentSource B2B platform.
ai.smithery/ImRonAI-mcp-server-browserbase
Automate cloud browsers to navigate websites, interact with elements, and extract structured data.ā¦