Repository avatar
AI Tools
v0.2.1
active

a-mem-mcp

io.github.DiaaAj/a-mem-mcp

Self-evolving memory system for AI agents

Documentation

A-MEM: Self-evolving memory for coding agents

PyPI version PyPI downloads MCP Registry

mcp-name: io.github.DiaaAj/a-mem-mcp

A-MEM is a self-evolving memory system for coding agents. Unlike simple vector stores, A-MEM automatically organizes knowledge into a Zettelkasten-style graph with dynamic relationships. Memories don't just get stored—they evolve and connect over time.

Currently tested with Claude Code. Support for other MCP-compatible agents is planned.

Quick Start

Install

pip install a-mem

Add to Claude Code

claude mcp add a-mem -s user -- a-mem-mcp \
  -e LLM_BACKEND=openai \
  -e LLM_MODEL=gpt-4o-mini \
  -e OPENAI_API_KEY=sk-...

That's it! A session-start hook installs automatically to remind Claude to use memory.

Note: Memory is stored per-project in ./chroma_db. For global memory across all projects, see Memory Scope.

Uninstall

a-mem-uninstall-hook   # Remove hooks first
pip uninstall a-mem

How It Works

t=0              t=1                t=2

                 ◉───◉             ◉───◉
 ◉               │                 ╱ │ ╲
                 ◉                ◉──┼──◉
                                     │
                                     ◉

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━▶
            self-evolving memory
  1. Add a memory → A-MEM extracts keywords, context, and tags via LLM
  2. Find neighbors → Searches for semantically similar existing memories
  3. Evolve → Decides whether to link, strengthen connections, or update related memories
  4. Store → Persists to ChromaDB with full metadata and relationships

The result: a knowledge graph that grows smarter over time, not just bigger.

Features

Self-Evolving Memory Memories aren't static. When you add new knowledge, A-MEM automatically finds related memories and strengthens connections, updates context, and evolves tags.

Semantic + Structural Search Combines vector similarity with graph traversal. Find memories by meaning, then explore their connections.

MCP Tools

A-MEM exposes 6 tools to your coding agent:

ToolDescription
add_memory_noteStore new knowledge (async, returns immediately)
search_memoriesSemantic search across all memories
search_memories_agenticSearch + follow graph connections
read_memory_noteGet full details of a specific memory
update_memory_noteModify existing memory
delete_memory_noteRemove a memory

Example Usage

# The agent calls these automatically, but here's what happens:

# Store a memory (returns task_id immediately)
add_memory_note(content="Auth uses JWT in httpOnly cookies, validated by AuthMiddleware")

# Search later
search_memories(query="authentication flow", k=5)

# Deep search with connections
search_memories_agentic(query="security", k=5)

Advanced Configuration

JSON Config

For more control, edit ~/.claude/settings.json (global) or .claude/settings.local.json (project):

{
  "mcpServers": {
    "a-mem": {
      "command": "a-mem-mcp",
      "env": {
        "LLM_BACKEND": "openai",
        "LLM_MODEL": "gpt-4o-mini",
        "OPENAI_API_KEY": "sk-..."
      }
    }
  }
}

Environment Variables

VariableDescriptionDefault
LLM_BACKENDopenai, ollama, sglang, openrouteropenai
LLM_MODELModel namegpt-4o-mini
OPENAI_API_KEYOpenAI API key
EMBEDDING_MODELSentence transformer modelall-MiniLM-L6-v2
CHROMA_DB_PATHStorage directory./chroma_db
EVO_THRESHOLDEvolution trigger threshold100

Memory Scope

  • Project-specific (default): Each project gets isolated memory in ./chroma_db
  • Global: Share across projects by setting CHROMA_DB_PATH=~/.local/share/a-mem/chroma_db

Alternative Backends

Ollama (local, free)

claude mcp add a-mem -s user -- a-mem-mcp \
  -e LLM_BACKEND=ollama \
  -e LLM_MODEL=llama2

OpenRouter (100+ models)

claude mcp add a-mem -s user -- a-mem-mcp \
  -e LLM_BACKEND=openrouter \
  -e LLM_MODEL=anthropic/claude-3.5-sonnet \
  -e OPENROUTER_API_KEY=sk-or-...

Hook Management (Claude Code)

The session-start hook reminds Claude to use memory tools. It installs automatically with Claude Code, but you can manage it manually:

a-mem-install-hook     # Install/reinstall hook
a-mem-uninstall-hook   # Remove hook completely

Python API

Use A-MEM directly in Python (works with any agent or application):

from agentic_memory.memory_system import AgenticMemorySystem

memory = AgenticMemorySystem(
    llm_backend="openai",
    llm_model="gpt-4o-mini"
)

# Add (auto-generates keywords, tags, context)
memory_id = memory.add_note("FastAPI app uses dependency injection for DB sessions")

# Search
results = memory.search("database patterns", k=5)

# Read full details
note = memory.read(memory_id)
print(note.keywords, note.tags, note.links)

Research

A-MEM implements concepts from the paper:

A-MEM: Agentic Memory for LLM Agents Xu et al., 2025 arXiv:2502.12110