Repository avatar
AI Tools
v0.1.0
active

rdl-mcp

io.github.bethmaloney/rdl-mcp

Edit SSRS reports using AI - simple tools to read and modify RDL files

Documentation

RDL MCP Server

mcp-name: io.github.bethmaloney/rdl-mcp

PyPI License: MIT Python 3.8+ MCP

Edit SSRS reports using AI assistants instead of wrestling with 2000+ lines of XML. This Model Context Protocol (MCP) server gives Claude, Copilot, and other AI tools simple commands to read and modify RDL files.

What It Does

Read reports:

  • describe_rdl_report - Get report structure overview
  • get_rdl_datasets - View datasets, fields, and stored procedures (supports field limiting and filtering)
  • get_rdl_parameters - List all report parameters
  • get_rdl_columns - See column headers, widths, and bindings

Modify reports:

  • update_column_header / update_column_width - Change columns
  • add_column / remove_column - Add or remove columns
  • update_column_format - Change number/date formatting
  • update_stored_procedure - Swap stored procedures
  • add_dataset_field / remove_dataset_field - Manage dataset fields
  • add_parameter / update_parameter - Manage parameters
  • validate_rdl - Validate XML after changes

Why it's better than editing XML:

  • AI sees clean JSON instead of verbose XML namespaces
  • One-line commands instead of error-prone string manipulation
  • Automatic validation catches errors before they break reports
  • No dependencies - just Python 3.8+ standard library

Installation

Requirements:

  • Python 3.8 or higher
  • uv (Python package manager and tool runner)

Installing uv:

  • macOS/Linux: curl -LsSf https://astral.sh/uv/install.sh | sh
  • Windows: powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
  • Alternative (all platforms): pip install uv or see installation docs

Note: uvx (included with uv) automatically handles the Python environment and dependencies. No manual Python package installation needed!

Quick Start

Claude Desktop

Edit config file:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • Linux: ~/.config/Claude/claude_desktop_config.json
{
  "mcpServers": {
    "rdl-mcp": {
      "command": "uvx",
      "args": ["rdl-mcp"]
    }
  }
}
GitHub Copilot (VSCode)

Add to VSCode settings (.vscode/mcp.json in your workspace or user settings):

{
  "servers": {
    "rdlMcp": {
      "type": "stdio",
      "command": "uvx",
      "args": ["rdl-mcp"]
    }
  }
}

Note: Requires VSCode with Copilot Chat extension installed.

After installation: Restart your AI assistant and try: "Describe the structure of my report.rdl file"

Optional: Enable debug logging

Set environment variables:

  • RDL_MCP_LOG_LEVEL: DEBUG, INFO, WARNING, or ERROR
  • RDL_MCP_LOG_FILE: Path to log file

Usage

Just ask your AI assistant in natural language:

  • "What datasets does this report use?"
  • "Make the Account Number column 2 inches wide"
  • "Format the Amount column as currency with 2 decimals"
  • "Add a new Amount column that shows the sum in the footer"
  • "Add a Status column but leave the footer blank"
  • "Update the main dataset to use the V2 stored procedure and add the TaxAmount field"
  • "Remove the obsolete Status column"
  • "Add a Year parameter to filter the report"

The AI assistant will use the appropriate MCP tools automatically.

Example: Editing vs. XML

Without MCP (manually editing XML):

<!-- Find this in 2000+ lines -->
<TablixCell><CellContents><Textbox><Paragraphs>
  <Paragraph><TextRuns><TextRun>
    <Value>Old Header</Value>
  </TextRun></TextRuns></Paragraph>
</Paragraphs></Textbox></CellContents></TablixCell>

With MCP (one command):

update_column_header(filepath="report.rdl",
                     old_header="Old Header",
                     new_header="New Header")

API Reference

View all available tools

Reading Tools

  • describe_rdl_report(filepath) - Report structure summary
  • get_rdl_datasets(filepath, field_limit?, field_pattern?) - Datasets with fields and stored procedures
    • field_limit: 0 = counts only (default), -1 = all fields, N = limit to N fields
    • field_pattern: Optional regex to filter field names
  • get_rdl_parameters(filepath) - All parameters with configurations
  • get_rdl_columns(filepath) - Column headers, widths, bindings

Editing Tools

  • update_column_header(filepath, old_header, new_header) - Change column text
  • update_column_width(filepath, column_index, new_width) - Modify width (e.g. "2.5in")
  • update_column_format(filepath, column_index, format_string) - Change format (e.g. "#,0.00", "dd/MM/yyyy", "C2")
  • add_column(filepath, column_index, header_text, field_binding, width?, format_string?, footer_expression?) - Add column
    • footer_expression: Optional expression for footer/total row - e.g. "=Sum(Fields!Amount.Value)", "=Count(Fields!ID.Value)", "Total:", or leave empty
  • remove_column(filepath, column_index) - Remove column
  • update_stored_procedure(filepath, dataset_name, new_sproc) - Change dataset sproc
  • add_dataset_field(filepath, dataset_name, field_name, data_field, type_name) - Add field to dataset
  • remove_dataset_field(filepath, dataset_name, field_name) - Remove field from dataset
  • add_parameter(filepath, name, data_type, prompt) - Add new parameter
  • update_parameter(filepath, name, prompt?, default_value?) - Update parameter
  • validate_rdl(filepath) - Validate XML structure

All tools return {success: bool, message?: string, error?: string} or structured data.

Limitations & Roadmap

Current limitations:

  • Tablix (table) controls only - no Matrix or Chart support yet
  • Works best with standard report layouts
  • Some complex RDL features may still need manual XML editing

Planned features:

  • Column reordering, grouping, and sorting configuration
  • Expression builder helpers
  • Dataset field management

Troubleshooting

Server not appearing?

  • Check absolute path in config is correct
  • Verify Python 3.8+: python3 --version
  • Restart your MCP client

Permission errors?

  • Make script executable: chmod +x rdl_mcp_server.py
  • Check RDL file read/write permissions

Releasing a New Version

This server is published to PyPI and the MCP Registry. To release a new version:

  1. Update version numbers in both files:

    pyproject.toml:

    version = "0.2.0"
    

    server.json:

    {
      "version": "0.2.0",
      "packages": [
        {
          "version": "0.2.0"
        }
      ]
    }
    
  2. Commit your changes:

    git add .
    git commit -m "Release v0.2.0: Add feature description"
    
  3. Create and push a git tag:

    git tag v0.2.0
    git push origin main --tags
    
  4. Automated publishing: The GitHub Actions workflows automatically:

    • Build and publish to PyPI (users can install via uvx rdl-mcp)
    • Validate server.json against the MCP schema
    • Publish to the MCP Registry (server appears in registry search)
    • Update downstream registries (like GitHub's MCP marketplace)

Contributing

PRs welcome! Priority areas:

  • Better column detection for complex layouts
  • More editing operations (reordering, grouping, etc.)

Requirements: Python standard library only

  1. Fork repo
  2. Create feature branch
  3. Make changes + tests
  4. Submit PR

License

MIT License - see LICENSE file for details.

This means you're free to use, modify, and distribute this software for any purpose, commercial or non-commercial.