
rdl-mcp
io.github.bethmaloney/rdl-mcp
Edit SSRS reports using AI - simple tools to read and modify RDL files
Documentation
RDL MCP Server
mcp-name: io.github.bethmaloney/rdl-mcp
Edit SSRS reports using AI assistants instead of wrestling with 2000+ lines of XML. This Model Context Protocol (MCP) server gives Claude, Copilot, and other AI tools simple commands to read and modify RDL files.
What It Does
Read reports:
describe_rdl_report- Get report structure overviewget_rdl_datasets- View datasets, fields, and stored procedures (supports field limiting and filtering)get_rdl_parameters- List all report parametersget_rdl_columns- See column headers, widths, and bindings
Modify reports:
update_column_header/update_column_width- Change columnsadd_column/remove_column- Add or remove columnsupdate_column_format- Change number/date formattingupdate_stored_procedure- Swap stored proceduresadd_dataset_field/remove_dataset_field- Manage dataset fieldsadd_parameter/update_parameter- Manage parametersvalidate_rdl- Validate XML after changes
Why it's better than editing XML:
- AI sees clean JSON instead of verbose XML namespaces
- One-line commands instead of error-prone string manipulation
- Automatic validation catches errors before they break reports
- No dependencies - just Python 3.8+ standard library
Installation
Requirements:
- Python 3.8 or higher
- uv (Python package manager and tool runner)
Installing uv:
- macOS/Linux:
curl -LsSf https://astral.sh/uv/install.sh | sh - Windows:
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex" - Alternative (all platforms):
pip install uvor see installation docs
Note: uvx (included with uv) automatically handles the Python environment and dependencies. No manual Python package installation needed!
Quick Start
Claude Desktop
Edit config file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json
{
"mcpServers": {
"rdl-mcp": {
"command": "uvx",
"args": ["rdl-mcp"]
}
}
}
GitHub Copilot (VSCode)
Add to VSCode settings (.vscode/mcp.json in your workspace or user settings):
{
"servers": {
"rdlMcp": {
"type": "stdio",
"command": "uvx",
"args": ["rdl-mcp"]
}
}
}
Note: Requires VSCode with Copilot Chat extension installed.
After installation: Restart your AI assistant and try: "Describe the structure of my report.rdl file"
Optional: Enable debug logging
Set environment variables:
RDL_MCP_LOG_LEVEL:DEBUG,INFO,WARNING, orERRORRDL_MCP_LOG_FILE: Path to log file
Usage
Just ask your AI assistant in natural language:
- "What datasets does this report use?"
- "Make the Account Number column 2 inches wide"
- "Format the Amount column as currency with 2 decimals"
- "Add a new Amount column that shows the sum in the footer"
- "Add a Status column but leave the footer blank"
- "Update the main dataset to use the V2 stored procedure and add the TaxAmount field"
- "Remove the obsolete Status column"
- "Add a Year parameter to filter the report"
The AI assistant will use the appropriate MCP tools automatically.
Example: Editing vs. XML
Without MCP (manually editing XML):
<!-- Find this in 2000+ lines -->
<TablixCell><CellContents><Textbox><Paragraphs>
<Paragraph><TextRuns><TextRun>
<Value>Old Header</Value>
</TextRun></TextRuns></Paragraph>
</Paragraphs></Textbox></CellContents></TablixCell>
With MCP (one command):
update_column_header(filepath="report.rdl",
old_header="Old Header",
new_header="New Header")
API Reference
View all available tools
Reading Tools
describe_rdl_report(filepath)- Report structure summaryget_rdl_datasets(filepath, field_limit?, field_pattern?)- Datasets with fields and stored proceduresfield_limit: 0 = counts only (default), -1 = all fields, N = limit to N fieldsfield_pattern: Optional regex to filter field names
get_rdl_parameters(filepath)- All parameters with configurationsget_rdl_columns(filepath)- Column headers, widths, bindings
Editing Tools
update_column_header(filepath, old_header, new_header)- Change column textupdate_column_width(filepath, column_index, new_width)- Modify width (e.g. "2.5in")update_column_format(filepath, column_index, format_string)- Change format (e.g. "#,0.00", "dd/MM/yyyy", "C2")add_column(filepath, column_index, header_text, field_binding, width?, format_string?, footer_expression?)- Add columnfooter_expression: Optional expression for footer/total row - e.g. "=Sum(Fields!Amount.Value)", "=Count(Fields!ID.Value)", "Total:", or leave empty
remove_column(filepath, column_index)- Remove columnupdate_stored_procedure(filepath, dataset_name, new_sproc)- Change dataset sprocadd_dataset_field(filepath, dataset_name, field_name, data_field, type_name)- Add field to datasetremove_dataset_field(filepath, dataset_name, field_name)- Remove field from datasetadd_parameter(filepath, name, data_type, prompt)- Add new parameterupdate_parameter(filepath, name, prompt?, default_value?)- Update parametervalidate_rdl(filepath)- Validate XML structure
All tools return {success: bool, message?: string, error?: string} or structured data.
Limitations & Roadmap
Current limitations:
- Tablix (table) controls only - no Matrix or Chart support yet
- Works best with standard report layouts
- Some complex RDL features may still need manual XML editing
Planned features:
- Column reordering, grouping, and sorting configuration
- Expression builder helpers
- Dataset field management
Troubleshooting
Server not appearing?
- Check absolute path in config is correct
- Verify Python 3.8+:
python3 --version - Restart your MCP client
Permission errors?
- Make script executable:
chmod +x rdl_mcp_server.py - Check RDL file read/write permissions
Releasing a New Version
This server is published to PyPI and the MCP Registry. To release a new version:
-
Update version numbers in both files:
pyproject.toml:version = "0.2.0"server.json:{ "version": "0.2.0", "packages": [ { "version": "0.2.0" } ] } -
Commit your changes:
git add . git commit -m "Release v0.2.0: Add feature description" -
Create and push a git tag:
git tag v0.2.0 git push origin main --tags -
Automated publishing: The GitHub Actions workflows automatically:
- Build and publish to PyPI (users can install via
uvx rdl-mcp) - Validate
server.jsonagainst the MCP schema - Publish to the MCP Registry (server appears in registry search)
- Update downstream registries (like GitHub's MCP marketplace)
- Build and publish to PyPI (users can install via
Contributing
PRs welcome! Priority areas:
- Better column detection for complex layouts
- More editing operations (reordering, grouping, etc.)
Requirements: Python standard library only
- Fork repo
- Create feature branch
- Make changes + tests
- Submit PR
License
MIT License - see LICENSE file for details.
This means you're free to use, modify, and distribute this software for any purpose, commercial or non-commercial.
rdl-mcppip install rdl-mcp