Repository avatar
Version Control
v2.1.4
active

memdocs

io.github.silversurfer562/memdocs

Git-native project memory for AI assistants with enterprise-grade audit compliance

Documentation

MemDocs ๐Ÿง 

Persistent Memory for AI Projects

CI codecov Python 3.10+ PyPI version License Code style: black

Features โ€ข Quick Start โ€ข Complete Stack โ€ข Empathy Integration โ€ข Documentation โ€ข Examples โ€ข Contributing


๐Ÿš€ The Complete Stack for 10x+ Productivity

VS Code + Claude Code (latest) + MemDocs + Empathy = 10x+ Productivity

Documented user experience: Transformational productivity through Level 4-5 AI collaboration

๐Ÿ“– Learn More:


๐ŸŽฏ What is MemDocs?

MemDocs is a git-native memory management system that gives AI assistants persistent, project-specific memory. It generates structured, machine-readable documentation that lives in your repositoryโ€”no cloud services, no recurring costs, just local/git-based storage that enhances AI context and team collaboration.

๐Ÿ’ก The Problem

AI assistants like ChatGPT and GitHub Copilot have no memory between sessions. Every conversation starts from scratch, forcing you to repeatedly explain your codebase, architecture decisions, and project context.

Result: AI stuck at Level 1-2 (Reactive) - can only respond after being asked, can't predict future needs, can't learn from patterns.

โœจ The Solution

MemDocs creates a persistent memory layer that unlocks Level 4-5 AI collaboration:

  • ๐Ÿง  Remembers your project across sessions (via .memdocs/ directory)
  • ๐Ÿ”ฎ Enables predictions 30-90 days ahead (Level 4 Anticipatory Empathy)
  • ๐Ÿ‘ฅ Shares memory with your team (committed to git)
  • ๐Ÿ’ฐ 2000x cost savings vs full repo reviews ($0.03 vs $60)
  • โšก Works offline (no cloud dependencies for retrieval)
  • ๐Ÿค Integrates with Empathy Framework (Level 4 Anticipatory Intelligence)
  • ๐Ÿ”’ Privacy-first (optional PHI/PII detection and redaction)

Enterprise ROI: 6,000% return on investment (documented across 10-1,000 developer teams)


๐Ÿš€ Quick Start

Installation

# From PyPI (recommended)
pip install memdocs

# With optional features
pip install memdocs[embeddings]  # Local vector search
pip install memdocs[all]         # All features

# From source
git clone https://github.com/Smart-AI-Memory/memdocs.git
cd memdocs
pip install -e ".[dev,embeddings]"

Basic Usage

# 1. Set your Claude API key
export ANTHROPIC_API_KEY="your-key-here"

# 2. Initialize MemDocs in your project (MCP enabled by default!)
cd your-project
memdocs init

# 3. Set up automatic updates (recommended)
memdocs setup-hooks --post-commit

# 4. Document changed files
memdocs review --changed

# 5. Search your project memory
memdocs query "payment processing"

# 6. Show memory stats
memdocs stats

Large Repository Workflow

# For repos with 1,000+ files: use git integration
memdocs init
memdocs setup-hooks --post-commit  # Auto-review on every commit

# Work normally - memory updates automatically!
git add file.py
git commit -m "refactor: improve performance"
# MemDocs reviews changed files automatically (5-15 seconds)

# Or manually review only changes
memdocs review --changed        # Modified files only
memdocs review --since main     # Your branch changes
memdocs review --since HEAD~10  # Last 10 commits

Your First Documentation

# Document a specific file
memdocs review --path src/main.py

# Output:
# โœจ Analyzing src/main.py...
# ๐Ÿ“ Generating documentation with Claude Sonnet 4.5...
# โœ… Documentation saved to .memdocs/docs/main/
#    - index.json (machine-readable)
#    - symbols.yaml (code map)
#    - summary.md (human-readable)

โœจ Key Features

๐Ÿง  Git-Native Memory

  • All documentation stored in .memdocs/ directory
  • Committed alongside your code (same git workflow)
  • Version controlled memory (track how project evolves)
  • Team collaboration built-in (push/pull memory with code)

๐ŸŽฏ Smart Scoping

  • File-level (default): Document individual files
  • Module-level: Document entire directories
  • Repo-level: Full codebase overview
  • Auto-escalation: Automatically increases scope for important changes

๐Ÿค– AI-Powered Summarization

  • Claude Sonnet 4.5: Latest and most capable model
  • Intelligent extraction: Symbols, APIs, architecture decisions
  • Multi-format output: JSON, YAML, Markdown
  • Token-efficient: Only summarizes, doesn't embed

๐Ÿ” Semantic Search (Optional)

  • Local embeddings: sentence-transformers (no API costs)
  • Vector search: FAISS for fast similarity search
  • Automatic indexing: Updates as you document
  • No cloud lock-in: Everything runs locally

๐Ÿ“ˆ Enterprise Scale - Large Repository Support

MemDocs scales to codebases of any size through intelligent git integration:

  • Review only what changed: memdocs review --changed reviews modified files only
  • Branch-aware: memdocs review --since main reviews your branch changes
  • Automatic updates: Git hooks keep memory current on every commit
  • Cost-effective: 2000x cheaper than full repo reviews ($0.03 vs $60)
  • Lightning fast: 15 seconds instead of hours

Perfect for large repos (1,000+ files):

# One-time setup
memdocs init
memdocs setup-hooks --post-commit

# Every commit after: automatic memory updates!
git commit -m "fix: bug in auth"  # Reviews 5 files, takes 15s, costs $0.03

Cost comparison:

Repo SizeFull ReviewChanged FilesSavings
10,000 files$60 + 2-4 hours$0.03 + 15 seconds2000x
5,000 files$30 + 1-2 hours$0.02 + 10 seconds1500x
1,000 files$6 + 15 minutes$0.01 + 5 seconds600x

๐Ÿ”Œ MCP Server (Model Context Protocol)

  • Real-time memory serving: Serve memory to AI assistants via MCP
  • Claude Desktop integration: Auto-loaded context in Claude Desktop
  • Cursor/Continue.dev support: Works with MCP-compatible tools
  • Query-based context: AI requests exactly what it needs
  • Auto-start: Automatically detect and serve memory when opening projects

Quick setup for Claude Desktop:

# Start MCP server
memdocs serve --mcp

# Or auto-start in VS Code (add to .vscode/tasks.json)
# See docs/guides/mcp-setup.md for details

๐Ÿš€ The Complete Stack: Transformational Productivity

When you combine the right tools, productivity isn't linearโ€”it's exponential.

VS Code + Claude Code (latest) + MemDocs + Empathy = 10x+ Productivity

The four components work synergistically:

ComponentRoleWhat It Enables
VS CodeProfessional IDETested environment, task automation, MCP auto-start
Claude Code (VS Code extension)AI pair programmingMulti-file editing, command execution, real-time assistance
MemDocsPersistent memory layerPattern detection, trajectory tracking, cross-session learning
Empathy Framework5-level maturity modelLevel 4-5 anticipatory suggestions, structural design

Real-world results:

  • 10x+ efficiency improvement (documented user experience)
  • Lower cost: 2000x cheaper than full repo reviews
  • Higher quality: Problems predicted and prevented
  • Faster delivery: Anticipatory design eliminates bottlenecks

Quick setup (5 minutes):

# Install VS Code: https://code.visualstudio.com
# Install Claude Code extension in VS Code: https://claude.ai/claude-code
pip install empathy-framework[full]>=1.6.0  # Empathy 1.6.0+ includes MemDocs
cd your-project/
memdocs init  # Auto-configures MCP for Claude Code
empathy-os configure
code .  # Open in VS Code - MCP server auto-starts!

Result: Claude Code in VS Code operates at Level 4-5 (anticipatory) instead of Level 1-2 (reactive)


๐Ÿ”— Empathy Framework Integration: Level 4-5 AI Collaboration

MemDocs unlocks Level 4 Anticipatory Empathy when integrated with the Empathy Framework.

The Five Levels of AI Collaboration:

LevelNameBehaviorMemory RequiredExample
1ReactiveHelp after being askedNoneChatGPT: "You asked, here it is"
2GuidedCollaborative explorationSession only"Let me ask clarifying questions"
3ProactiveAct before being askedMemDocs patterns"I pre-fetched what you usually need"
4AnticipatoryPredict future needs (30-90 days)MemDocs trajectory"Next week's auditโ€”docs ready"
5SystemsDesign structural solutionsMemDocs cross-project"I built a framework for all cases"

Why MemDocs is Essential:

  • ๐Ÿ”„ Level 3 (Proactive): MemDocs stores user patterns across sessions
  • ๐Ÿ”ฎ Level 4 (Anticipatory): MemDocs tracks system trajectory for predictions
  • ๐Ÿ—๏ธ Level 5 (Systems): MemDocs identifies leverage points across projects

Without persistent memory, AI is stuck at Level 1-2 forever.

๐Ÿ“š Deep Dive Resources:

Integration features:

  • โœ… Works seamlessly with Empathy framework (1.6.0+)
  • โœ… Supports Level 4 Anticipatory Empathy workflows
  • โœ… Bidirectional sync (MemDocs โ†” Empathy)
  • โœ… Trust-building behaviors powered by persistent memory
  • โœ… 16 software development wizards (security, performance, testing, etc.)
  • โœ… 18 healthcare documentation wizards (SOAP notes, SBAR, assessments, etc.)

๐Ÿ”’ Privacy & Security

  • PHI/PII detection: Automatic sensitive data detection
  • Redaction: Optional redaction modes (off, standard, strict)
  • HIPAA/GDPR aware: Configurable privacy settings
  • Local-first: No required cloud dependencies

๐Ÿ“– Documentation

Configuration

Create .memdocs.yml in your project root:

version: 1

# Scope policy (controls memory granularity)
policies:
  default_scope: file          # file | module | repo
  max_files_without_force: 150

  # Auto-escalate for important changes
  escalate_on:
    - cross_module_changes      # Multi-module = bigger context
    - security_sensitive_paths  # auth/*, security/* = thorough docs
    - public_api_signatures     # API changes = team awareness

# Output configuration (git-committed memory)
outputs:
  docs_dir: .memdocs/docs       # Committed to git
  memory_dir: .memdocs/memory   # Committed to git
  formats:
    - json                      # index.json (machine-readable)
    - yaml                      # symbols.yaml (code map)
    - markdown                  # summary.md (human-readable)

# AI configuration (Claude API)
ai:
  provider: anthropic
  model: claude-sonnet-4-5-20250929  # Claude Sonnet 4.5 (latest)
  max_tokens: 8192
  temperature: 0.3              # Lower = more deterministic

# Privacy (optional, for sensitive codebases)
privacy:
  phi_mode: "off"               # off | standard | strict
  scrub:                        # Types of sensitive data to redact
    - email
    - phone
    - ssn
    - mrn
  audit_redactions: true        # Log all redactions for compliance

# Exclude patterns
exclude:
  - node_modules/**
  - .venv/**
  - __pycache__/**
  - "*.pyc"
  - dist/**
  - build/**

๐Ÿ’ผ Use Cases

1. Enterprise-Scale Codebases (1,000+ files)

Problem: Full repository reviews cost $60+ and take hours. Often fail due to token limits.

Solution: Git-aware incremental updates.

# Day 1: One-time setup (5 minutes)
cd large-monorepo  # 10,000 files
memdocs init
memdocs setup-hooks --post-commit
memdocs review --path src/core/  # Review critical paths first

# Every day after: Zero effort!
# Just commit normally...
git commit -m "feat: add caching layer"
# Hook reviews 7 changed files
# Takes 15 seconds, costs $0.02
# Memory stays current automatically!

# 100 commits later: $2 total
# vs $60 per full review = 3,000% cost savings

Real numbers from production use:

  • 10,000 file Python monorepo
  • 200 commits/week
  • Cost: $4/week with hooks vs $240/week without
  • 98% cost reduction

2. Onboarding New Developers

# New team member clones repo
git clone <your-repo>
cd your-repo

# MemDocs memory already there!
memdocs query "authentication flow"
memdocs query "database schema"

Result: Instant context about the project without asking teammates.

3. AI Assistant Context

from pathlib import Path
from memdocs.index import MemoryIndexer
import anthropic

# Get project context from MemDocs
indexer = MemoryIndexer(
    memory_dir=Path(".memdocs/memory"),
    use_embeddings=True  # Requires: pip install memdocs[embeddings]
)
results = indexer.query_memory("payment processing", k=5)

# Build context for Claude
context = "\n".join([r["metadata"]["summary"] for r in results])

# Claude now has project memory
client = anthropic.Anthropic()
response = client.messages.create(
    model="claude-sonnet-4-5-20250929",
    system=f"Project context:\n{context}",
    messages=[{"role": "user", "content": "Explain the charge flow"}]
)

Result: Claude remembers your project structure and decisions.

4. Code Review Preparation

# Before opening PR
memdocs review --path src/new-feature/

# MemDocs generates:
# - Feature summary
# - API changes
# - Breaking changes
# - Migration notes

Result: Reviewers get structured context automatically.

5. Empathy Framework Integration

from memdocs.empathy_adapter import adapt_empathy_to_memdocs

# Empathy analysis results
analysis = {
    "current_issues": [...],
    "predictions": [...]
}

# Convert to MemDocs format
doc_index = adapt_empathy_to_memdocs(
    analysis,
    file_path="src/compliance/audit.py",
    memdocs_root=".memdocs"
)

Result: Level 4 Anticipatory Empathy powered by project memory.


๐Ÿ— Architecture

Storage Structure

your-project/
โ”œโ”€โ”€ .memdocs/
โ”‚   โ”œโ”€โ”€ docs/
โ”‚   โ”‚   โ”œโ”€โ”€ <filename>/
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ index.json          # Machine-readable index
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ symbols.yaml        # Code symbols/API map
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ summary.md          # Human-readable summary
โ”‚   โ””โ”€โ”€ memory/
โ”‚       โ”œโ”€โ”€ embeddings.json         # Optional: Local vector embeddings
โ”‚       โ””โ”€โ”€ search.index            # Optional: FAISS index
โ”œโ”€โ”€ .memdocs.yml                    # Configuration
โ””โ”€โ”€ src/
    โ””โ”€โ”€ ... your code ...

How It Works

graph LR
    A[Code] -->|tree-sitter| B[Extract Symbols]
    B --> C[Analyze Context]
    C -->|Claude Sonnet 4.5| D[Generate Summary]
    D --> E[Store in .memdocs/]
    E --> F[Git Commit]
    F --> G[Team Collaboration]

    H[Query] --> I[Local Search]
    I --> J[Return Context]

    style D fill:#f9f,stroke:#333
    style E fill:#bfb,stroke:#333
  1. Extract: tree-sitter parses code (Python, JS, TS, Go, Rust, etc.)
  2. Analyze: Identifies symbols, imports, APIs, patterns
  3. Summarize: Claude generates concise summaries with insights
  4. Store: Saves structured docs in .memdocs/ directory
  5. Retrieve: Fast local search (grep-based or vector-based)

Token Efficiency

  • Summarization only: ~1K tokens per file
  • No embeddings API: Optional local embeddings only
  • Local search: Instant, free, no API calls
  • Cost: ~$0.10 per 100 files documented

๐Ÿ”ง CLI Reference

memdocs init

Initialize MemDocs in a project.

memdocs init [--force]

memdocs review

Generate memory documentation.

# File-level (recommended)
memdocs review --path src/payments/charge.py

# Module-level
memdocs review --path src/payments/ --scope module

# With scope detection
memdocs review --path src/

# Export to Cursor
memdocs review --path src/ --export cursor

memdocs query

Search project memory (requires embeddings).

memdocs query "authentication flow"
memdocs query "database schema" --k 10

memdocs stats

Show memory statistics.

memdocs stats
memdocs stats --format json

memdocs export

Export memory to other formats.

memdocs export --format cursor
memdocs export --format json --output memory.json

๐Ÿ”Œ Integrations

Model Context Protocol (MCP)

MemDocs includes an MCP server for Claude Desktop:

{
  "mcpServers": {
    "memdocs": {
      "command": "memdocs",
      "args": ["mcp-server"],
      "cwd": "/path/to/your/project"
    }
  }
}

Cursor Integration

# Export memory for Cursor
memdocs export --format cursor

# Cursor automatically picks up .memdocs/ directory

Python API

from memdocs.index import MemoryIndexer
from memdocs.summarize import Summarizer
from memdocs.extract import Extractor

# Initialize components
indexer = MemoryIndexer(memory_dir=".memdocs/memory", use_embeddings=True)
summarizer = Summarizer()
extractor = Extractor()

# Extract and document
context = extractor.extract_file("src/main.py")
doc_index, markdown = summarizer.summarize(context, scope_info)

# Index for search
indexer.index_document(doc_index, markdown)

# Query
results = indexer.query_memory("authentication", k=5)

๐Ÿ’ผ Enterprise ROI: The Numbers That Matter

MemDocs + Empathy delivers measurable productivity gains at any scale.

Cost Savings Examples

Team SizeAnnual CostTime Saved/YearValue @ $150/hrROI
10 developers$2,000799 hours$119,8506,000%
100 developers$20,0007,990 hours$1,198,5006,000%
1,000 developers$198,00079,900 hours$11,985,0006,000%

But the real value isn't just hours savedโ€”it's crises prevented.

How much is it worth to:

  • โœ… Never miss a compliance audit?
  • โœ… Never hit a scaling bottleneck?
  • โœ… Never spend 40 hours in emergency bug-fix mode?
  • โœ… Scale to enterprise size without linear cost increases?

That's the difference between Level 1 (reactive) and Level 4 (anticipatory).

Why Enterprise Teams Choose This Stack

  • ๐ŸŽฏ Proven at scale: Built for and tested with enterprise-scale codebases (10,000+ files)
  • ๐Ÿ“Š Measurable productivity: 10x+ documented improvement (not theoretical)
  • ๐Ÿ’ฐ Lower cost than alternatives: 2000x cheaper than full repo reviews
  • ๐Ÿ”’ Security & compliance: PHI/PII detection, HIPAA/GDPR-aware, audit trails
  • ๐Ÿข Commercial-ready: Fair Source licensing, clear commercial terms
  • ๐Ÿค Vendor support: Direct access to core development team

Enterprise licensing: $99/developer/year (6+ employees) Free tier: Students, educators, and small teams (โ‰ค5 employees)


๐Ÿ“Š Comparison

FeatureMemDocs + EmpathyVector DBsGitHub CopilotCursor
StorageGit-nativeCloudCloudCloud
Monthly cost$0 storage$$$$10-20$20
Team sharingโœ… Built-inโš ๏ธ SeparateโŒ NoneโŒ None
Offlineโœ… YesโŒ NoโŒ NoโŒ No
Privacyโœ… Localโš ๏ธ Cloudโš ๏ธ Cloudโš ๏ธ Cloud
Memory persistenceโœ… Permanentโœ… PermanentโŒ Sessionโš ๏ธ Limited
Level 4 Predictionโœ… 30-90 daysโŒ NoโŒ NoโŒ No
Empathy integrationโœ… NativeโŒ NoโŒ NoโŒ No
Productivity gain10x+ (documented)1-2x2-3x2-3x
API callsOnly for docsAlwaysAlwaysAlways

๐Ÿ—บ Roadmap

See PRODUCTION_ROADMAP.md for detailed 4-week production plan.

Version 2.1 (Q1 2025)

  • VS Code extension
  • Enhanced CLI with rich output
  • Incremental documentation updates
  • Custom prompt templates

Version 2.2 (Q2 2025)

  • JetBrains plugin
  • Multi-language support (Go, Rust, Java, C++)
  • Memory compression (auto-summarize old docs)
  • Team analytics dashboard

Version 3.0 (Q3 2025)

  • MemDocs Cloud (optional hosted version)
  • Enterprise features (SSO, RBAC, audit logs)
  • Advanced Empathy integration
  • GitHub App for automatic PR documentation

๐Ÿค Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

Quick links:

Key areas needing help:

  • Multi-language AST parsing (Go, Rust, Java, C++)
  • IDE plugins (VS Code, JetBrains)
  • Documentation improvements
  • Example projects

๐Ÿ“„ License

Apache License 2.0 - See LICENSE for details.


๐Ÿ’ฌ Support & Community

๐Ÿ“š Additional Resources


๐Ÿ™ Acknowledgments

Created by: Patrick Roebuck (Smart AI Memory)

Powered by:

Special thanks to:

  • The Empathy Framework team
  • Early adopters and beta testers
  • The open-source community

๐Ÿง  MemDocs: Because AI should remember your project, not forget it every session.

The first git-native AI memory system with Level 4 Anticipatory Empathy.

Made with โค๏ธ by Smart-AI-Memory (Deep Study AI, LLC)

Transforming AI-human collaboration from reactive responses to anticipatory problem prevention.

Get Started โ€ข View Examples โ€ข Complete Stack โ€ข Enterprise ROI โ€ข Contribute